MATHEMATICS

Paper 02 – General Proficiency

2 hours 40 minutes

04 JANUARY 2011 (a.m.)

1. Number
 a.
 I. 86.65
 II. V
 b. Salaries
 I. Basic wage for one $380
 II. Overtime wage for six hours overtime $85.50
 III. Total paid in overtime salaries $684
 IV. Total overtime hours worked 48

2. Algebra
 a. \(\frac{x}{15} \)
 b. \(ab(a + 2) \)
 c. \(p = \sqrt{ql + r} \)
 d. Donut problem
 I. Expression \(8x + 5(2x + 3) \)
 II. Equation, solving it gives
 a. Small box \(x = 10 \)
 b. Large box \(2x + 3 = 23 \)

3.
 a. \(12p^7q^4 \)
 b. Measurement
 I. \(240 \text{cm}^3 \)
 II. 13 cartons, since you can’t buy 12.5
 \(V = \pi r^2h \)
 III. \[h = \frac{240}{\pi \times 2.5^2} = 12.2 \text{cm} \]
4.
 a. Sets
 I. $H = \{5, 7, 9, 11\}$
 II. $J = \{2, 3, 5, 7, 11\}$
 III. Draw the diagram to show the information

\[U \]

\[\begin{array}{c}
H \\
| \\
| \\
| \\
| \\
| 9 \\
| \\
| 7 \\
| \\
| 11 \\
| \\
| 2 \\
| \\
| 3 \\
| \\
| 5 \\
| \\
| 1, 4, 6, 8, 10, 12 \\
\end{array} \]

b. Part b is deliberately left out

5. Functions/coordinate geometry

 $3y = 2x - 6 \Rightarrow y = mx + c$

 a.
 $y = \frac{2x - 6}{3} = \frac{2x}{3} - 2$

 I. $m = \frac{2}{3}$

 II. Any line perpendicular to the given line will have a gradient of $m = \frac{-3}{2}$, finding the equation of the line using that gradient and \((4,7)\)

 $$y = \frac{-3x}{2} + 13$$

 b. ..

 $4^2 - k = 11$

 I. $k = 5$

 $$f(x) = x^2 - 5$$

 II. $f(3) = 4$

 III. $x^2 - 5 = 95$

 $x = 10$
6. Statistics
 a. Copy and complete the table

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales in $Thousands</td>
<td>38</td>
<td>35</td>
<td>27</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

 b. Greatest decrease is seen between March – April, the line is steepest there, or just find the gradient to confirm
 c. $25000 average sales
 d. June has $25,000
 e. Sales in June saw in increase

7. Transformations
 a. The coordinates \(R(2, 4), R'(2, 0) \)
 b. The transformation is a reflection in the line \(y = 2 \)
 c. Enlargement
 I. Draw the diagram
II. \(R''S''T'' = 3^2 \times 4 = 36 \text{ unit}^2 \)

III. Geometric relationships
 a. The shapes are similar
 b. \(R''S''T'' = 9RST \)

8. Investigation
 a. Draw the diagrams and complete the table

 ![Diagram of rectangles A, B, and C]

 b. Complete the table

<table>
<thead>
<tr>
<th>Rectangle</th>
<th>Length</th>
<th>Width</th>
<th>Area</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>3</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>5</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>6</td>
<td>36</td>
<td>24</td>
</tr>
</tbody>
</table>

 Answers to parts b and c are in the table
9. Functions and relations
 a.
 I. \(f(5) = \frac{3}{5} \)
 II. \(f^{-1}(x) = \frac{7}{2-x} \)
 III. \(gf(x) = \sqrt{\frac{2x-7}{x}} + 3 \)
 b. Completing the square
 1. \(1 - 6x - x^2 = 10 - (x+3)^2 \)
 or \(-1(x+3)^2 + 10\)
 II.
 a. Maximum value is \(y = 10 \)
 b. Axis of symmetry is \(x = -3 \)
 c. \(1 - 6x - x^2 = 0 \)
 \(x = -6.16, x = 0.16 \)
10. Geometry and trigonometry

a.
 I. OGF = 31°, OGF is an isosceles triangle
 II. DEF is supplementary to DGF, supplementary angles in a cyclic quadrilateral DEFG. DGF = DGO+OGF = 31+25=56 so DEF = 180 – 56 = 124°

b. Bearings
 I. Draw the diagram

 II. Calculate
 a. ∠JKL = 90 + 54 = 144°
 b. JL, using the cosine rule JL = 174.1 km
 c. We need to find angle “a” add it to 90 and subtract that sum from 360, so using the sine rule to find angle a we get 24.3°, the bearing then is 360 – (90 + 24.3) = 245.7°,
11. Vectors and matrices

a. Matrices and transformations

I. Set up the matrix equation, find and use its inverse to give

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 7 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ 2 & 7 \end{pmatrix}
\]

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 7 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 & -3 \\ 2 & 7 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]

II. Notice what the matrix \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) does to the points, it switches them around and changes the sign of the y value so \((x, y) = (1, -5) \)

III. The matrix \(M \) represents a 90 degree rotation about the origin

b. Vectors

I. ..

a. \(OP = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \)

\[OR = OP + PR \]

b. \[OR = \begin{pmatrix} 2 \\ 7 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \]

II. ..

\[RS = RO + OS \]

a. \[RS = \begin{pmatrix} -6 \\ -4 \end{pmatrix} + \begin{pmatrix} 14 \\ -2 \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix} \]

b. Note that \(RS = 2PR \) this indicates that they are parallel to each other, also both vectors share the point \(R \), therefore they form a straight line \(RST \) and so \(R, S \) and \(T \) are collinear