READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This paper consists of TWO sections.
2. There are EIGHT questions in Section I and THREE questions in Section II.
3. Answer ALL questions in Section I, and any TWO questions from Section II.
4. Write your answers in the booklet provided.
5. All working must be shown clearly.
6. A list of formulae is provided on page 2 of this booklet.

Required Examination Materials

Electronic calculator
Geometry set
Graph paper (provided)

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2010 Caribbean Examinations Council
All rights reserved.

01234020/F 2012
SECTION I

Answer ALL the questions in this section.

All working must be clearly shown.

1. (a) Calculate the EXACT value of
\[
\frac{3\frac{1}{5} - \frac{2}{3}}{2\frac{4}{5}}
\]
giving your answer as a fraction in its lowest terms. (3 marks)

(b) The table below shows the cost price, selling price and profit or loss as a percentage of the cost price.

Copy and complete the table below, inserting the missing values at (i) and (ii).

<table>
<thead>
<tr>
<th>Cost Price</th>
<th>Selling Price</th>
<th>Percentage Profit or Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $55.00</td>
<td>$44.00</td>
<td>______________</td>
</tr>
<tr>
<td>(ii)</td>
<td>$100.00</td>
<td>25% profit</td>
</tr>
</tbody>
</table>

(4 marks)

(c) The table below shows some rates of exchange:

| US $1.00 = EC $2.70 |
| TT $1.00 = EC $0.40 |

Calculate the value of

(i) EC $1 in TT $
(ii) US $80 in EC $
(iii) TT $648 in US $.

(1 mark)
(1 mark)
(3 marks)

Total 12 marks

01234020/F 2012

GO ON TO THE NEXT PAGE
2. (a) Factorise completely:
 (i) \(2x^3y + 6x^2y^2\)
 (ii) \(9x^2 - 4\)
 (iii) \(4x^2 + 8xy - xy - 2y^2\)
 (2 marks)
 (1 mark)
 (2 marks)

(b) Solve for \(x\):
\[
\frac{2x - 3}{3} + \frac{5 - x}{2} = 3
\]
(3 marks)

(c) Solve the simultaneous equations:
\[
3x - 2y = 10 \\
2x + 5y = 13
\]
(4 marks)

Total 12 marks

3. (a) In a survey of 36 students, it was found that
30 play tennis,
x play volleyball ONLY,
9x play BOTH tennis and volleyball
4 play neither tennis nor volleyball.

(i) Given that:
\[U = \{\text{students in the survey}\}\]
\[V = \{\text{students who play Volleyball}\}\]
\[T = \{\text{students who play Tennis}\}\]

Copy and complete the Venn diagram below to show the number of students in the subsets marked \(y\) and \(z\).

(2 marks)
(ii)
a) Write an expression in \(x \) to represent the TOTAL number of students in the survey. \(\text{(1 mark)} \)

b) Write an equation in \(x \) to represent the total number of students in the survey and hence solve for \(x \). \(\text{(2 marks)} \)

(b) The diagram below, **not drawn to scale**, shows the journey of a ship which started at port \(P \), sailed 15 km due south to port \(Q \), and then a further 20 km due west to port \(R \).

(i) Copy the diagram and label it to show the points \(Q \) and \(R \), and the distances 20 km and 15 km. \(\text{(2 marks)} \)

(ii) Calculate \(PR \), the **shortest** distance of the ship from the port where the journey started. \(\text{(2 marks)} \)

(iii) Calculate the measure of angle \(QPR \), giving your answer to the nearest degree. \(\text{(3 marks)} \)

Total 12 marks
4. The diagram below, not drawn to scale, shows the cross section of a prism in the shape of a sector of a circle, centre O, and radius 3.5 cm. The angle at the centre is 270°.

![Diagram](image)

Use $\pi = \frac{22}{7}$

(a) Calculate

(i) the length of the arc ABC (2 marks)

(ii) the perimeter of the sector $OABC$ (2 marks)

(iii) the area of the sector $OABC$. (2 marks)

(b) The prism is 20 cm long and is a solid made of tin. Calculate

(i) the volume of the prism (2 marks)

(ii) the mass of the prism, to the nearest kg, given that 1 cm3 of tin has a mass of 7.3 kg. (2 marks)

Total 10 marks
5. (a) (i) Using a ruler, a pencil and a pair of compasses, construct triangle \(PQR\) with \(PQ = 8\ cm, \angle PQR = 60^\circ\) and \(\angle QPR = 45^\circ\). (4 marks)

(ii) Measure and state the length of \(RQ\). (1 mark)

(b) The line \(\ell\) passes through the points \(S(6, 6)\) and \(T(0, -2)\).

Determine

(i) the gradient of the line, \(\ell\) (2 marks)

(ii) the equation of the line, \(\ell\) (2 marks)

(iii) the midpoint of the line segment, \(TS\) (1 mark)

(iv) the length of the line segment, \(TS\) (2 marks)

Total 12 marks
6. An answer sheet is provided for this question.

The graph below shows triangle \(LMN \) and its image \(PQR \) after an enlargement.

![Graph showing triangle LMN and its image PQR.](image)

On the answer sheet provided

(a) Locate the centre of enlargement, showing your method clearly. \((2 \text{ marks})\)

(b) State the scale factor and the coordinates of the centre of the enlargement. \((2 \text{ marks})\)

(c) Determine the value of \(\frac{\text{Area of } PQR}{\text{Area of } LMN} \). \((2 \text{ marks})\)

(d) Draw and label triangle \(ABC \) with coordinates \((-4, 4), (-1, 4) \) and \((-1, 2)\) respectively. \((2 \text{ marks})\)

(e) Describe fully the single transformation which maps triangle \(LMN \) on to triangle \(ABC \). \((3 \text{ marks})\)

Total 11 marks
7. The table below shows the ages, to the nearest year, of the persons who visited the clinic during a particular week.

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Number of persons</th>
<th>Cumulative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 – 49</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>50 – 59</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>60 – 69</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>70 – 79</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>80 – 89</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

(a) Copy and complete the table to show the cumulative frequency.

(b) Using a scale of 2 cm to represent 10 years on the x-axis and 1 cm to represent 5 persons on the y-axis, draw the cumulative frequency curve for the data.

(c) Use your graph drawn at (b) above to estimate

(i) the median age for the data

(ii) the probability that a person who visited the clinic was 75 years or younger.

Draw lines on your graph to show how these estimates were obtained.

Total 11 marks
8. An answer sheet is provided for this question.

The diagram below shows the first three figures in a sequence of figures. Each figure is an isosceles triangle made of a rubber band stretched around pins on a geo-board. The pins are arranged in rows and columns, one unit apart.

(a) On the answer sheet provided, draw the fourth figure (Figure 4) in the sequence. (2 marks)

(b) Study the patterns in the table below, and on your answer sheet, complete the rows numbered (i), (ii), (iii) and (iv). The breaks in the columns are to indicate that the rows do not follow one after the other.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Area of Triangle</th>
<th>No. of Pins on Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$2 \times 1 + 1 = 3$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$2 \times 2 + 1 = 5$</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>$2 \times 3 + 1 = 7$</td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>(iii)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(iv)</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Total 10 marks
SECTION II

There are THREE questions in this section.

Answer TWO questions in this section

ALGEBRA AND RELATIONS, FUNCTIONS AND GRAPHS

9. (a) (i) Solve the pair of simultaneous equations:

\[y = 8 - x \]
\[2x^2 + xy = -16 \]

(5 marks)

(ii) State, giving the reason for your answer, whether the line \(y = 8 - x \) is a tangent to the curve \(2x^2 + xy = -16 \).

(2 marks)

(b) An answer sheet is provided for this question.

A florist makes bouquets of flowers, each consisting of \(x \) roses and \(y \) orchids. For each bouquet, she applies the following constraints:

- the number of orchids must be at least half the number of roses
- there must be at least 2 roses
- there must be no more than 12 flowers

(i) Write THREE inequalities for the constraints given.

(3 marks)

(ii) On the answer sheet provided, shade the region of the graph which represents the solution set for the inequalities in (b) (i).

(1 mark)

(iii) State the coordinates of the points which represent the vertices of the region showing the solution set.

(1 mark)

(iv) The florist sells a bouquet of flowers to make a profit of $3 on each rose and $4 on each orchid. Determine the MAXIMUM possible profit on the sale of a bouquet.

(3 marks)

Total 15 marks
MEASUREMENT, GEOMETRY AND TRIGONOMETRY

10. (a) The diagram below, not drawn to scale, shows a quadrilateral \(QRST\) in which \(QS = 7\) cm, \(ST = 10\) cm, \(QT = 8\) cm, \(\angle SRQ = 60^\circ\) and \(\angle RQS = 48^\circ\).

\[Q \quad 8\, \text{cm} \]
\[48^\circ \]
\[7\, \text{cm} \]
\[10\, \text{cm} \]
\[R \]
\[60^\circ \]
\[S \]

Calculate

(i) the length of \(RS\)
(ii) the measure of \(\angle QTS\).

(b) The diagram below, not drawn to scale, shows a circle, centre \(O\). The line \(UW\) is a tangent to the circle, \(ZOXW\) is a straight line and angle \(UOX = 70^\circ\).

\[Z \]
\[O \]
\[70^\circ \]
\[X \]
\[U \]
\[V \]
\[W \]

(i) Calculate, showing working where necessary, the measure of angle

a) \(OUZ\)

b) \(UVY\)

c) \(UWO\).

(ii) Name the triangle in the diagram which is congruent to triangle

a) \(ZOU\)

b) \(YXU\).

Total 15 marks

GO ON TO THE NEXT PAGE
VECTORS AND MATRICES

11. (a) The points A, B and C have position vectors $\overrightarrow{OA} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 12 \\ -2 \end{pmatrix}$ respectively.

 (i) Express in the form $\begin{pmatrix} x \\ y \end{pmatrix}$ the vector

 a) \overrightarrow{BA}
 b) \overrightarrow{BC}.

 (2 marks)

 (2 marks)

 (ii) State ONE geometrical relationship between BA and BC.

 (1 mark)

 (iii) Draw a sketch to show the relative positions of A, B and C.

 (2 marks)

(b) (i) Calculate the values of a and b such that

\[
\begin{pmatrix} a & -4 \\ 1 & b \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix}.
\]

 (3 marks)

 (ii) Hence, or otherwise, write down the inverse of $\begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$.

 (2 marks)

 (iii) Use the inverse of $\begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$ to solve for x and y in the matrix equation

\[
\begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 12 \\ 7 \end{pmatrix}.
\]

 (3 marks)

Total 15 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.