Vectors

Proving parallel and collinear/ class worksheet

(a) The diagram below shows two position vectors \overrightarrow{OA} and \overrightarrow{OB} .

- (i) Write as a column vector, in the form $\begin{pmatrix} x \\ y \end{pmatrix}$:
 - a) \overrightarrow{OA} (1 mark)
 - b) \overrightarrow{OB} (1 mark)
 - c) \overrightarrow{BA} (2 marks)
- (ii) Given that G is the mid-point of the line AB, write as a column vector in the form $\begin{pmatrix} x \\ y \end{pmatrix}$:
 - a) \overrightarrow{BG} (1 mark)
 - b) \overrightarrow{OG} (1 mark)
- (a) The points A, B and C have position vectors $\overrightarrow{OA} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 12 \\ -2 \end{pmatrix}$ respectively.
 - (i) Express in the form $\begin{pmatrix} x \\ y \end{pmatrix}$ the vector
 - a) \overrightarrow{BA} (2 marks)
 - b) \overrightarrow{BC} . (2 marks)
 - (ii) State ONE geometrical relationship between BA and BC. (1 mark)
 - (iii) Draw a sketch to show the relative positions of A, B and C. (2 marks)

In the diagram below, the coordinates of P and Q are (2, 4) and (8, 2) respectively. The line segment joining the origin (0, 0) to the point P may be written as \overrightarrow{OP} .

(i) What term is used to describe \overrightarrow{OP} ?

- (2 marks)
- (ii) Write EACH of the following in the form : $\begin{bmatrix} a \\ b \end{bmatrix}$
 - a) \overrightarrow{OP}

(1 mark)

b) \overrightarrow{OQ}

(1 mark)

c) \overrightarrow{PQ}

- (2 marks)
- (iii) Given that $\overrightarrow{OP} = \overrightarrow{RQ}$, determine the coordinates of the point, R. (3 marks)
- (iv) State the type of quadrilateral formed by *PQRO*. **Justify your answer**. (2 marks)
- (b) The position vectors of the points V, E and D relative to an origin O are

$$\overrightarrow{OV} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \overrightarrow{OE} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}, \overrightarrow{OD} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

respectively.

- (i) Express the following vectors in the form $\begin{pmatrix} a \\ b \end{pmatrix}$: \overrightarrow{VE} , \overrightarrow{DV} , \overrightarrow{ED} .
- (ii) Prove that the points V, E and D lie on a straight line and show their relative positions on the line.
- (iii) State the value of the ratio EV:DV.

(8 marks)

- (b) The coordinates of the vertices of $\triangle PQS$ are P(1, 5), Q(4, -1) and S(6, 0).
 - (i) Write down the position vectors, \overrightarrow{PQ} and \overrightarrow{PS} .
 - (ii) Determine the position vectors, \overrightarrow{OG} and \overrightarrow{OH} , given that G and H are the midpoints of PQ and PS respectively.
 - (iii) Determine the vectors GH and QS.
 - (iv) Hence, state TWO geometrical relationships between GH and QS. (11 marks)

In the figure above, **not drawn to scale**, ABCD is a parallelogram such that $\overrightarrow{DC} = 3\underline{x}$ and $\overrightarrow{DA} = 3\underline{y}$. The point P is on DB such that DP : PB = 1:2.

- (a) Express in terms of \underline{x} and \underline{y} :
 - (i) \overrightarrow{AB}
 - (ii) \overrightarrow{BD}
 - (iii) DP (5 marks)
- (b) Show that $\overrightarrow{AP} = \underline{x} 2\underline{y}$. (2 marks)
- (c) Given that E is the mid-point of DC, prove that A, P and E are collinear. (4 marks)
- (d) Given that $x = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, use a vector method to prove that triangle *AED* is isosceles. (4 marks)

Total 15 marks

(b) In the diagram below, **not drawn to scale**, B is the midpoint of OX, C is the midpoint of AB, and D is such that OD = 2DA. The vectors \mathbf{a} and \mathbf{b} are such that $\overrightarrow{OA} = 3\mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (i) Write in terms of a and b:
 - a) \overrightarrow{AB}
 - b) \overrightarrow{AC}
 - c) \overrightarrow{DC}
 - d) DX (6 marks)
- (ii) State TWO geometrical relationships between DX and DC. (2 marks)
- (iii) State ONE geometrical relationship between the points D, C, and X.

(b) In the figure below, **not drawn to scale**, OE, EF and MF are straight lines. The point H is such that EF = 3EH. The point G is such that MF = 5MG. M is the midpoint of OE.

The vector $\overrightarrow{OM} = v$ and $\overrightarrow{EH} = u$.

- (i) Write in terms of u and/or v, an expression for:
 - a) \overrightarrow{HF} (1 mark)
 - b) \overrightarrow{MF} (2 marks)
 - c) \overrightarrow{OH} (2 marks)
- (ii) Show that $\overrightarrow{OG} = \frac{3}{5} \left(2v + u \right)$ (2 marks)
- (iii) Hence, prove that O, G and H lie on a straight line. (3 marks)