Vectors

Proving parallel and collinear/ class worksheet

(a) The diagram below shows two position vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$.

(i) Write as a column vector, in the form $\binom{x}{y}$:
a) $\quad \overrightarrow{O A}$
(1 mark)
b) $\quad \overrightarrow{O B}$
(1 mark)
c) $\overrightarrow{B A}$
(2 marks)
(ii) Given that G is the mid-point of the line $A B$, write as a column vector in the form $\binom{x}{y}$:
a) - $\overrightarrow{B G}$
(1 mark)
b) $\quad \overrightarrow{O G}$
(1 mark)
(a) The points A, B and C have position vectors $\overrightarrow{O A}=\binom{6}{2}, \overrightarrow{O B}=\binom{3}{4}$ and $\overrightarrow{O C}=\binom{12}{-2}$
(i) Express in the form $\binom{x}{y}$ the vector
a) $\overrightarrow{B A}$
(2 marks)
b) $\overrightarrow{B C}$.
(2 marks)
(ii) State ONE geometrical relationship between $B A$ and $B C$.
(1 mark)
(iii) Draw a sketch to show the relative positions of A, B and C.
(2 marks)

In the diagram below, the coordinates of P and Q are $(2,4)$ and $(8,2)$ respectively. The line segment joining the origin $(0,0)$ to the point P may be written as $\overrightarrow{O P}$.

(i) What term is used to describe $\overrightarrow{O P}$? \quad (2 marks)
(ii) Write EACH of the following in the form : $\binom{a}{b}$
a) $\overrightarrow{O P}$
(1 mark)
b) $\overrightarrow{O Q}$
(1 mark)
c) $\overrightarrow{P Q}$
(iii) Given that $\overrightarrow{O P}=\overrightarrow{R Q}$, determine the coordinates of the point, R. (3 marks)
(iv) State the type of quadrilateral formed by $P Q R O$. Justify your answer.
(2 marks)
(b) The position vectors of the points V, E and D relative to an origin O are

$$
\overrightarrow{O V}=\binom{3}{-1}, \overrightarrow{O E}=\binom{-2}{4}, \overrightarrow{O D}=\binom{-1}{3}
$$

respectively.
(i) Express the following vectors in the form $\binom{a}{b}$: $\overrightarrow{V E}, \overrightarrow{D V}, \overrightarrow{E D}$.
(ii) Prove that the points V, E and D lie on a straight line and show their relative positions on the line.
(iii) State the value of the ratio $E V: D V$. (8 marks)
(b) The coordinates of the vertices of $\triangle P Q S$ are $P(1,5), Q(4,-1)$ and $S(6,0)$.
(i) Write down the position vectors, $\overrightarrow{P Q}$ and $\overrightarrow{P S}$.
(ii) Determine the position vectors, $\overrightarrow{O G}$ and $\overrightarrow{O H}$, given that G and H are the midpoints of $P Q$ and $P S$ respectively.
(iii) Determine the vectors $\overrightarrow{G H}$ and $\overrightarrow{Q S}$.
(iv) Hence, state TWO geometrical relationships between $G H$ and $Q S$. (11 marks)

In the figure above, not drawn to scale, $A B C D$ is a parallelogram such that $\overrightarrow{D C}=3 \underline{x}$ and $\overrightarrow{D A}=3 \underline{y}$. The point P is on $D B$ such that $D P: P B=1: 2$.
(a) Express in terms of \underline{x} and \underline{y} :
(i) $\overrightarrow{A B}$
(ii) $\overrightarrow{B D}$
(iii) $\overrightarrow{D P}$
(5 marks)
(b) Show that $\overrightarrow{A P}=\underline{x}-2 \underline{y}$.
(2 marks)
(c) Given that E is the mid-point of $D C$, prove that A, P and E are collinear.
(4 marks)
(d) Given that $x=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 1 \\ \text { isosceles. }\end{array}\right]$, use a vector method to prove that triangle $A E D$ is
(4 marks)
(4 marks)
Total 15 marks
(b) In the diagram below, not drawn to scale, B is the midpoint of $O X, C$ is the midpoint of $A B$, and D is such that $O D=2 D A$. The vectors a and \mathbf{b} are such that $\overrightarrow{O A}=3 \mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

(i) Write in terms of \mathbf{a} and \mathbf{b} :
a) $\quad \overrightarrow{A B}$
b) $\overrightarrow{A C}$
c) $\quad \overrightarrow{D C}$
d) $\quad \overrightarrow{D X}$
(6 marks)
(ii) State TWO geometrical relationships between $D X$ and $D C$.
(2 marks)
(iii) State ONE geometrical relationship between the points D, C, and X.
(1 mark)
(b) In the figure below, not drawn to scale, $O E, E F$ and $M F$ are straight lines. The point H is such that $E F=3 E H$. The point G is such that $M F=5 M G . M$ is the midpoint of OE.
The vector $\overrightarrow{O M}=v$ and $\overrightarrow{E H}=u$.

(i) Write in terms of \boldsymbol{u} and/or \boldsymbol{v}, an expression for:
a) $\quad \overrightarrow{H F}$
(1 mark)
b) $\quad \overrightarrow{M F}$
(2 marks)
c) $\overrightarrow{O H}$
(2 marks)
(ii) Show that $\overrightarrow{O G}=\frac{3}{5}(2 v+u)$
(2 marks)
(iii) Hence, prove that O, G and H lie on a straight line.
(3 marks)

